
Programming
Languages Final
Project

Liam Twomey
Dylan Tivnan

<prog> → <fun> { <fun> }

<fun> → ;<comment>; |fun <id> <lexpr> | <expr>

<expr> → let {<id> := <expr>} in <expr> | <rexpr> { (and | or) <rexpr>

| not <rexpr> | if <expr> then <expr> else <expr>

| switch <int> { case <int> <expr> {case <int> <expr>}} default <expr>

| apply (<id> | (<lexpr>)) <expr>

<rexpr> → <mexpr> [(< | > | >= | <= | =) <mexpr>]

<mexpr> → <term> { (+ | -) <term> }

<term> → <factor> { (* | / | ++ | U | ∩) <factor> }

<factor> → <id> | <int> | <real> | (<expr>)

| hd <factor> | tl <factor>

| list([(<id> | <int> | <real>) {, (<id> | <int> | <real>)}])

| true | false

| set[(<id> | <int> | <real>) {, (<id> | <int> | <real>)}]

<lexpr> → <id> => <expr>

Grammar

First Order Type Lambda-Expressions and
Closures

fun name x ~

 y ~

 x * y

apply (name(3))(2)

● Created a ClosureNode

● ClosureNode takes in a SyntaxNode that represents the lambda

Expression

● Created a method in ClosureNode to set the environment of the

closure

● Created a method in ClosureNode that will return the

environment of the Closure

● The evaluate of ClosureNode will simply return the copy of the

closures environment

Sets

● Sets only allow unique elements, repeated elements will not be added

● Sets have two binary operations, union and intersect which operate on two non-empty

sets

● Sets can take in ids ints or reals and there is no type checking with sets as set operations

are not dependent on type matching

Set Semantics

● The two main operations that we have on sets are union and intersect

● Semantically some set containing elements X1, X2, ……,Xn is denoted as if the evaluation

of X1 to Xn under the environment yields an allowed value, then append that evaluation

to the set otherwise return null and when done return the set

● The union of two sets S1 and S2 is denoted as, if S1 and S2 are both sets, then return the

union of the evaluation of S1 under the environment with the evaluation of S2 under the

environment, otherwise return null

● The same goes for intersect, with the difference being the intersection of the two sets

Set Implementation

● Created a new class called SetNode, which takes in a HashSet of TokenNodes

● In the parser sets are handled very similarly to lists, after the left brackets a while loop

goes through each token until the right bracket and adds each new element to the set,

and at the end it creates the new SetNode passing in the HashSet

● The evaluation of SetNode iterates through the set and evaluates each TokenNode, then

adds that to a return set, which is returned once all TokenNodes are evaluated

Two New Features

- N-way Selection
- Switch Statement

- Multiple declaration lets

N-Way selection

switch(expression) {

 case(1)

 // code block

 case(2)

 // code block

 default

 // code block

}

● Created two new classes called SwitchNode and

CaseNode

● Switch node Takes in the test case (TokenNode), a linked

list of all CaseNodes , and the default case

● CaseNode will take in the case condition , and the branch

of the case

● Created new token types SWITCH, CASE, DEFAULT

● Created a new method in the parser called handleSwitch()

that parses the Switch statement

N-Way selection Evaluation

switch(expression) {

 case(1)

 // code block

 case(2)

 // code block

 default

 // code block

}

● If the first token is “Switch”, the handleSwitch() method will

be called in evalExpr() (similar to the Let, If and Apply

statements)

● Presented a while loop that checks all the cases (with the

bodies) and added them to the case linked list until the

default body shows up

● The case linked list is all CaseNodes

● Once default is reached, it will return a SwitchNode that

includes the initial case, a syntax node, and the linked list

of all the cases

● SwitchNode is responsible for finding the correct case.

● If the case is found, evaluate the correct branch, else

evaluate the default branch

Multiple variable declaration lets

● This allows a single let to declare and evaluate statements with multiple variables

● Like normal let statements, these multiple variable lets have their own scope which is

defined by let.

● In terms of the grammar, after the let keyword any amount of id assignments to

expressions more than one are allowed and will all be handled with a single in followed by

an expression

● An example : let x := 4 y:=6 z:=5 in x + y + z

● Semantically the evaluation under the environment of a let expression that assigns I to E1

X to E2 all the way through A to En-1 in En is denoted as the evaluation of En under the

environment where E1 maps to I, E2 maps to X,........, En maps to A

Implementation

● Created a new constructor in LetNode

● Takes in a HashMap of Tokens as keys with the syntax nodes that give them value as

values and the expression to evaluate, it also sets a boolean multiLet to true

● In the parser, if the next token after the first variable assignment is not IN, then a while

loop will run until IN which adds each new token as a key and assignment as a value to a

Hashmap, this HashMap is then passed into LetNode along with the expression

● In the evaluation of LetNode if multiLet is true, the HashMap is iterated through

● For every key, we get the value, which is the syntaxNode that gives value, then as long as

it’s of the allowed type we add each key and value pair to the environment and evaluate

the expression when done

Comments

● Comments have a high priority so that they don’t get mixed in with other operations

● Comments must be at the top of test case, before function declarations and any other

operations otherwise they won’t be read, with them at the top they will always be

displayed even if parsing fails

● We chose semicolon as the comment indicator

● Comments function as block comments and anything in between the semicolons will be

parsed as part of the comment

● In the parser, there is now a while loop in evalFun() where if the first token is a semicolon

the while loop will read tokens until the closing semicolon and outputs the string it read as

a comment

